Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(2): e0352422, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786582

RESUMO

Quorum sensing (QS) is a highly conserved microbial communication mechanism based on the production and sensing of secreted signaling molecules. The recalcitrant pathogen Pseudomonas aeruginosa is a problematic nosocomial pathogen with complex interconnected QS systems controlling multiple virulence functions. The relevance of QS in P. aeruginosa pathogenesis is well established; however, the regulatory interrelationships of the three major QS systems, LasR/LasI, MvfR (PqsR)/PqsABCD, and RhlR/RhlI, have been studied primarily in vitro. It is, therefore, unclear how these relationships translate to the host environment during infection. Here, we use a collection of P. aeruginosa QS mutants of the three major QS systems to assess the interconnections and contributions in intestinal inflammation and barrier function in vivo. This work reveals that MvfR, not LasR or RhlR, promotes intestinal inflammation during infection. In contrast, we find that P. aeruginosa-driven murine intestinal permeability is controlled by an interconnected QS network involving all three regulators, with MvfR situated upstream of LasR and RhlR. This study demonstrates the importance of understanding the interrelationships of the QS systems during infection and provides critical insights for developing successful antivirulence strategies. Moreover, this work provides a framework to interrogate QS systems in physiologically relevant settings. IMPORTANCE Pseudomonas aeruginosa is a common multidrug-resistant bacterial pathogen that seriously threatens critically ill and immunocompromised patients. Intestinal colonization by this pathogen is associated with elevated mortality rates. Disrupting bacterial communication is a desirable anti-infective approach since these systems coordinate multiple acute and chronic virulence functions in P. aeruginosa. Here, we investigate the role of each of the three major communication systems in the host intestinal functions. This work reveals that P. aeruginosa influences intestinal inflammation and permeability through distinct mechanisms.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , Humanos , Animais , Camundongos , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/genética , Inflamação , Infecções por Pseudomonas/microbiologia
2.
Shock ; 59(3): 393-399, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36597771

RESUMO

ABSTRACT: Introduction: Despite significant advances in pediatric burn care, bloodstream infections (BSIs) remain a compelling challenge during recovery. A personalized medicine approach for accurate prediction of BSIs before they occur would contribute to prevention efforts and improve patient outcomes. Methods: We analyzed the blood transcriptome of severely burned (total burn surface area [TBSA] ≥20%) patients in the multicenter Inflammation and Host Response to Injury ("Glue Grant") cohort. Our study included 82 pediatric (aged <16 years) patients, with blood samples at least 3 days before the observed BSI episode. We applied the least absolute shrinkage and selection operator (LASSO) machine-learning algorithm to select a panel of biomarkers predictive of BSI outcome. Results: We developed a panel of 10 probe sets corresponding to six annotated genes ( ARG2 [ arginase 2 ], CPT1A [ carnitine palmitoyltransferase 1A ], FYB [ FYN binding protein ], ITCH [ itchy E3 ubiquitin protein ligase ], MACF1 [ microtubule actin crosslinking factor 1 ], and SSH2 [ slingshot protein phosphatase 2 ]), two uncharacterized ( LOC101928635 , LOC101929599 ), and two unannotated regions. Our multibiomarker panel model yielded highly accurate prediction (area under the receiver operating characteristic curve, 0.938; 95% confidence interval [CI], 0.881-0.981) compared with models with TBSA (0.708; 95% CI, 0.588-0.824) or TBSA and inhalation injury status (0.792; 95% CI, 0.676-0.892). A model combining the multibiomarker panel with TBSA and inhalation injury status further improved prediction (0.978; 95% CI, 0.941-1.000). Conclusions: The multibiomarker panel model yielded a highly accurate prediction of BSIs before their onset. Knowing patients' risk profile early will guide clinicians to take rapid preventive measures for limiting infections, promote antibiotic stewardship that may aid in alleviating the current antibiotic resistance crisis, shorten hospital length of stay and burden on health care resources, reduce health care costs, and significantly improve patients' outcomes. In addition, the biomarkers' identity and molecular functions may contribute to developing novel preventive interventions.


Assuntos
Queimaduras , Sepse , Humanos , Criança , Estudos Retrospectivos , Tempo de Internação , Inflamação
3.
Nat Commun ; 13(1): 5103, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042245

RESUMO

Intestinal barrier derangement allows intestinal bacteria and their products to translocate to the systemic circulation. Pseudomonas aeruginosa (PA) superimposed infection in critically ill patients increases gut permeability and leads to gut-driven sepsis. PA infections are challenging due to multi-drug resistance (MDR), biofilms, and/or antibiotic tolerance. Inhibition of the quorum-sensing transcriptional regulator MvfR(PqsR) is a desirable anti-PA anti-virulence strategy as MvfR controls multiple acute and chronic virulence functions. Here we show that MvfR promotes intestinal permeability and report potent anti-MvfR compounds, the N-Aryl Malonamides (NAMs), resulting from extensive structure-activity-relationship studies and thorough assessment of the inhibition of MvfR-controlled virulence functions. This class of anti-virulence non-native ligand-based agents has a half-maximal inhibitory concentration in the nanomolar range and strong target engagement. Using a NAM lead in monotherapy protects murine intestinal barrier function, abolishes MvfR-regulated small molecules, ameliorates bacterial dissemination, and lowers inflammatory cytokines. This study demonstrates the importance of MvfR in PA-driven intestinal permeability. It underscores the utility of anti-MvfR agents in maintaining gut mucosal integrity, which should be part of any successful strategy to prevent/treat PA infections and associated gut-derived sepsis in critical illness settings. NAMs provide for the development of crucial preventive/therapeutic monotherapy options against untreatable MDR PA infections.


Assuntos
Infecções por Pseudomonas , Sepse , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/farmacologia , Biofilmes , Estado Terminal , Humanos , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Sepse/tratamento farmacológico , Virulência
4.
Microbiol Spectr ; 9(1): e0023321, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34346751

RESUMO

Dimethyl sulfoxide (DMSO) and polyethylene glycols (PEGs) are frequently used as potent excipients in pharmaceutical formulations. However, these agents also have an interesting antimicrobial and anti-inflammatory profile that could interfere with the efficacy testing of anti-infective compounds when the latter are solubilized in DMSO or PEGs. Here, we demonstrate the antimicrobial and anti-inflammatory effects of DMSO-PEG400 in a murine Pseudomonas aeruginosa infection model, aiming to draw attention to the appropriate selection of solvents for difficult-to-solubilize anti-infectives. IMPORTANCE Our study demonstrates the antimicrobial and anti-inflammatory effects of the combination of DMSO and PEG400 against Pseudomonas aeruginosa in vitro and in vivo in a murine infection model of heightened intestinal permeability. The aim of this study is to draw attention to the appropriate selection of solvents for difficult-to-solubilize anti-infective compounds, to avoid interference with the assay or system tested. This is an extremely important consideration, since potential antimicrobial and anti-inflammatory effects of the solvent vehicle are detrimental to research studies on the efficacy of new anti-infective agents, given that the vehicle effect can mask the effect of the tested compounds. Our results can therefore be of great value to the scientific community, as they can guide researchers in the future to avoid this significant pitfall that can cost substantial amounts of money and valuable time during investigations of the effects of novel, difficult-to-solubilize antimicrobial compounds.


Assuntos
Antibacterianos/farmacologia , Queimaduras/tratamento farmacológico , Dimetil Sulfóxido/farmacologia , Polietilenoglicóis/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Queimaduras/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Solventes , Virulência/efeitos dos fármacos
5.
Burns ; 47(8): 1833-1843, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33795157

RESUMO

OBJECTIVE: To investigate the prevalence of multidrug-resistant (MDR) Pseudomonas aeruginosa (PA) producing extended-spectrum beta-lactamases (ESBLs) and metallo-beta-lactamases (MBLs) in burn patients in Algeria. METHODS: Between April 2016 and October 2019, 47 non-redundant isolates of PA were collected from 47 burn patients admitted to the Department of Burns at the Military Hospital of Algiers in Algeria. Antibiotic susceptibility testing was performed by agar diffusion and the Phoenix automated method. Resistance genes were identified by PCR, and molecular typing of isolates was carried out by enterobacterial repetitive intergenic consensus (ERIC) sequences-polymerase chain reaction (PCR). RESULTS: Among the 47 non-redundant MDR PA strains isolated, 59.57% were phenotypically ESBLs-positive, and 100% were phenotypically MBL-positive. The ESBL-positive isolates were subsequently screened for six groups of bla genes encoding ESBL-type enzymes, namely blaCTX-M2, blaPER, blaTEM, blaSHV, blaVEB, and blaGES. Out of the 28 ESBL-producing strains, 23 (82.14%) were blaCTX-M2 positive; 18 (38.29%) were blaPER positive, and 16 (34.04%) were blaTEM positive, while 5 (17.9%) were co-harboring blaCTX-M2, blaTEM, and blaPER genes. The blaSHV, blaVEB, and blaGES genes were not detected in any of the ESBL positive isolates. Since all isolates were MBL-positive, all 47 strains were screened for the blaNDM-1, blaIMP, blaVIM genes that produce MBLs; however, none of these genes were detected. Additional screening for the oprD gene demonstrated that 45 (95.74%) of the isolates were positive for this gene. Finally, ERIC PCR revealed 11 distinct PA clones among the blaCTX-M2 positive strains. CONCLUSION: This is the first study to report the presence of CTX-M2-producing PA in the North Africa region and the first to detect blaCTX-M2-positive and blaPER-positive PA clinical isolates in Algeria, therefore demonstrating the spread of such MDR strains to this part of the world. Identification of bacterial genotypic alterations that confer antibiotic resistance is critical in determining the most effective antimicrobial strategies to be employed. Therefore, our findings could potentially facilitate clinical decision making regarding the antibiotics of choice for the treatment of burn patients that suffer from PA infections in Algeria.


Assuntos
Queimaduras , Infecções por Pseudomonas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Queimaduras/microbiologia , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , beta-Lactamases/genética
6.
iScience ; 23(11): 101659, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33047099

RESUMO

Severe trauma predisposes patients to multiple independent infection episodes (MIIEs), leading to augmented morbidity and mortality. We developed a method to identify increased MIIE risk before clinical signs appear, which is fundamentally different from existing approaches entailing infections' detection after their establishment. Applying machine learning algorithms to genome-wide transcriptome data from 128 adult blunt trauma patients' (42 MIIE cases and 85 non-cases) leukocytes collected ≤48 hr of injury and ≥3 days before any infection, we constructed a 15-transcript and a 26-transcript multi-biomarker panel model with the least absolute shrinkage and selection operator (LASSO) and Elastic Net, respectively, which accurately predicted MIIE (Area Under Receiver Operating Characteristics Curve [AUROC] [95% confidence intervals, CI]: 0.90 [0.84-0.96] and 0.92 [0.86-0.96]) and significantly outperformed clinical models. Gene Ontology and network analyses found various pathways to be relevant. External validation found our model to be generalizable. Our unique precision medicine approach can be applied to a wide range of patient populations and outcomes.

7.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004693

RESUMO

Severe burn injury induces gut barrier dysfunction and subsequently a profound systemic inflammatory response. In the present study, we examined the role of the small intestinal brush border enzyme, intestinal alkaline phosphatase (IAP), in preserving gut barrier function and preventing systemic inflammation after burn wound infection in mice. Mice were subjected to a 30% total body surface area dorsal burn with or without intradermal injection of Pseudomonas aeruginosa. Mice were gavaged with 2000 units of IAP or vehicle at 3 and 12 hours after the insult. We found that both endogenously produced and exogenously supplemented IAP significantly reduced gut barrier damage, decreased bacterial translocation to the systemic organs, attenuated systemic inflammation, and improved survival in this burn wound infection model. IAP attenuated liver inflammation and reduced the proinflammatory characteristics of portal serum. Furthermore, we found that intestinal luminal contents of burn wound-infected mice negatively impacted the intestinal epithelial integrity compared with luminal contents of control mice and that IAP supplementation preserved monolayer integrity. These results indicate that oral IAP therapy may represent an approach to preserving gut barrier function, blocking proinflammatory triggers from entering the portal system, preventing gut-induced systemic inflammation, and improving survival after severe burn injuries.


Assuntos
Fosfatase Alcalina/administração & dosagem , Queimaduras/complicações , Modelos Animais de Doenças , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Sepse/prevenção & controle , Dermatopatias Bacterianas/complicações , Fosfatase Alcalina/fisiologia , Animais , Feminino , Inflamação/etiologia , Inflamação/patologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/etiologia , Sepse/patologia
8.
PLoS One ; 15(4): e0232175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32348343

RESUMO

Trauma patients are at risk of repeated hospital-acquired infections, however predictive scores aiming to identify susceptibility to such infections are lacking. The objective of this study was to investigate whether commonly employed disease-severity scores can successfully predict susceptibility to multiple independent infectious episodes (MIIEs) among trauma patients. A secondary analysis of data derived from the prospective, longitudinal study "Inflammation and the Host Response to Injury" ("Glue Grant") was performed. 1,665 trauma patients, older than 16, were included. Patients who died within seven days from the time of injury were excluded. Five commonly used disease-severity scores [Denver, Marshall, Acute Physiology and Chronic Health Evaluation II (APACHE II), Injury Severity Score (ISS), and New Injury Severity Score (NISS)] were examined as independent predictors of susceptibility to MIIEs. The latter was defined as two or more independent infectious episodes during the index hospital stay. Multivariable logistic regression was used for the statistical analysis. 22.58% of the population was found to be susceptible to MIIEs. Denver and Marshall scores were highly predictive of the MIIE status. For every 1-unit increase in the Denver or the Marshall score, there was a respective 15% (Odds Ratio:1.15; 95% CI: 1.07-1.24; p < 0.001) or 16% (Odds Ratio:1.16; 95% CI: 1.09-1.24; p < 0.001) increase in the odds of MIIE occurrence. APACHE II, ISS, and NISS were not independent predictors of susceptibility to MIIEs. In conclusion, the Denver and Marshall scores can reliably predict which trauma patients are prone to MIIEs, prior to any clinical sign of infection. Early identification of these individuals would potentially allow the implementation of rapid, personalized, preventative measures, thus improving patient outcomes and reducing healthcare costs.


Assuntos
Infecção Hospitalar/etiologia , Índices de Gravidade do Trauma , Ferimentos e Lesões/complicações , APACHE , Adulto , Infecção Hospitalar/epidemiologia , Suscetibilidade a Doenças , Feminino , Humanos , Escala de Gravidade do Ferimento , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Estados Unidos/epidemiologia
9.
Burns ; 45(8): 1775-1782, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690472

RESUMO

To determine the association between potential risk factors and multiple organ failure (MOF) in severe burn adult patients, we performed a secondary analysis of data from the "Inflammation and the Host Response to Injury" database, which included patients from six burn centers in the United States between 2003 and 2009. Three hundred twenty-two adult patients (aged ≥16 years) with severe burns (≥20.0% total body surface area [TBSA]) were included. MOF was defined according to the Denver score. Potential risk factors were analyzed for their association with MOF. Models were built using multivariable logistic regression analysis. Eighty-eight patients (27.3%) developed MOF during the study period. We found that TBSA, age, and inhalation injury were significant risk factors for MOF. This predictive model showed good performance, with the total area under the receiver operating characteristic curve being 0.823. Moreover, among patients who developed MOF, inhalation injury was significantly associated with the development of MOF in the acute phase (within three days of injury) (adjusted odds ratio 3.1; 95% confidence interval 1.1-8.3). TBSA, age, lactate, and Denver score within 24h were associated with the late phase development of MOF. Thus, we have identified key risk factors for the onset of MOF after severe burn injury. Our findings contribute to the understanding of individualized treatment and will potentially allow for efficient allocation of resources and a lower threshold for admission to an intensive care unit, which can prevent the development of MOF and eventually reduce mortality.


Assuntos
Queimaduras/epidemiologia , Insuficiência de Múltiplos Órgãos/epidemiologia , Lesão por Inalação de Fumaça/epidemiologia , Adulto , Fatores Etários , Área Sob a Curva , Superfície Corporal , Queimaduras/sangue , Queimaduras/patologia , Queimaduras/terapia , Comorbidade , Desbridamento , Diabetes Mellitus/epidemiologia , Feminino , Hidratação , Cardiopatias/epidemiologia , Humanos , Unidades de Terapia Intensiva , Ácido Láctico/sangue , Hepatopatias/epidemiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Escores de Disfunção Orgânica , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Curva ROC , Ressuscitação , Fatores de Risco , Transplante de Pele , Fumar/epidemiologia , Fatores de Tempo , Estados Unidos/epidemiologia , Adulto Jovem
10.
Mol Med Rep ; 19(5): 4057-4066, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896813

RESUMO

Burn­site infections, commonly due to Pseudomonas aeruginosa, have been associated with deranged intestinal integrity, allowing bacteria and their products to translocate from the gut to the circulatory system. The P. aeruginosa quorum sensing (QS) transcription factor MvfR (PqsR) controls the expression of numerous virulence factors, and the synthesis of several toxic products. However, the role of QS in intestinal integrity alterations, to the best of our knowledge, has not been previously investigated. Using a proven anti­MvfR, anti­virulence agent, the in vivo results of the present study revealed that inhibition of MvfR function significantly decreased Fluorescein Isothiocyanate­Dextran (FITC­Dextran) flow from the intestine to the systemic circulation, diminished bacterial translocation from the intestine to mesenteric lymph nodes (MLNs), and improved tight junction integrity in thermally injured and infected mice. In addition, the MvfR antagonist administration alleviates the intestinal inflammation, as demonstrated by reduced ileal TNF­α and fecal lipocalin­2 concentrations. In addition, it is associated with lower levels of circulating endotoxin and decreased P. aeruginosa dissemination from the burn wound to the ileum. Collectively, these results hold great promise that the inhibition of this QS system mitigates gut hyperpermeability by attenuating the derangement of morphological and immune aspects of the intestinal barrier, suggesting that MvfR function is crucial in the deterioration of intestinal integrity following P. aeruginosa burn­site infection. Therefore, an anti­virulence approach targeting MvfR, could potentially offer a novel therapeutic approach against multi­drug resistant P. aeruginosa infections following thermal injuries. Since this approach is targeting virulence pathways that are non­essential for growth or viability, our strategy is hypothesized to minimize the development of bacterial resistance, and preserve the beneficial enteric microbes, while improving intestinal integrity that is deranged as a result of burn and infection.


Assuntos
Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Queimaduras/microbiologia , Queimaduras/patologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Endotoxinas/sangue , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/patologia , Percepção de Quorum/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/sangue , Virulência
11.
Metab Brain Dis ; 28(3): 387-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475222

RESUMO

Wernicke's encephalopathy (WE) is a serious neuropsychiatric syndrome caused by chronic alcoholism and thiamine (T) deficiency. Our aim was to shed more light on the pathophysiology of WE, by introducing a modified in vivo experimental model of WE and by focusing on changes provoked in the total antioxidant status (TAS) and three crucial brain enzyme activities in adult rats. Rats were placed on ethanol (EtOH) consumption (20 % v/v) for a total of 5 weeks. By the end of the third week, rats were fed a T-deficient diet (TDD) and were treated with pyrithiamine (PT; 0.25 mg/kg) for the remaining 2 weeks. Following the induction of WE symptomatology, rats were treated with three consecutive (every 8 h) injections of saline or T (100 mg/kg) and were sacrificed. Brain homogenates were generated and used for spectrophotometrical evaluation of TAS and enzymatic activities. Additionally, in vitro experiments were conducted on brain homogenates or pure enzymes incubated with T or neuromodulatory antioxidants. Pre-exposure to EtOH provided a successful protocol modification that did not affect the expected time of WE symptomatology onset. Administration of T ameliorated this symptomatology. WE provoked oxidative stress that was partially limited by T administration, while T itself also caused oxidative stress to a smaller extent. Brain acetylcholinesterase (AChE) was found inhibited by WE and was further inhibited by T administration. In vitro experiments demonstrated a potential neuroprotective role for L-carnitine (Carn). Brain sodium-potassium adenosine triphosphatase (Na(+),K(+)-ATPase) activity was found increased in WE and was reduced to control levels by in vivo T administration; this increase was also evident in groups exposed to PT or to TDD, but not to EtOH. In vitro experiments demonstrated a potential neuroprotective role for this Na(+),K(+)-ATPase stimulation through T or L-cysteine (Cys) administration. Brain magnesium adenosine triphosphatase (Mg(2+)-ATPase) activity was found decreased by prolonged exposure to EtOH, but was not affected by the experimental induction of WE. Our data suggest that T administration inhibits AChE, which is also found inhibited in WE. Moreover, increased brain Na(+),K(+)-ATPase activity could be a marker of T deficiency in WE, while combined T and antioxidant co-supplementation of Cys and/or Carn could be neuroprotective in terms of restoring the examined crucial brain enzyme activities to control levels.


Assuntos
Antioxidantes/farmacologia , Encéfalo/enzimologia , Fármacos Neuroprotetores , ATPase Trocadora de Sódio-Potássio/metabolismo , Encefalopatia de Wernicke/enzimologia , Encefalopatia de Wernicke/prevenção & controle , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , ATPase de Ca(2+) e Mg(2+)/metabolismo , Carnitina/farmacologia , Cisteína/farmacologia , Masculino , Ratos , Ratos Wistar , Deficiência de Tiamina/metabolismo , Deficiência de Tiamina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...